首页 产业信息 快讯[手机端] 政策研究 文献资源 标准规范 科研成果 企业展厅 文献传递 在线咨询 开放利用 高级搜索

A nanofiber hydrogel derived entirely from ocean biomass for wound healing
作者 :  Sun, Tian-Cai; Yan, Bing-Yu; Ning, Xu-Chao; Tang, Zhi-Yue; Hui, Chao; Hu, Mao-zhi; Ramakrishna, Seeram; Long, Yun-Ze; Zhang, Jun
(^_^)

Crustaceans and fish scales in the marine food industry are basically thrown away as waste. This not only wastes resources but also causes environmental pollution. While reducing pollution and waste, biological activity and storage of materials are urgent issues to be solved. In this study, by first preparing dry fibers and then making hydrogels, we prepared a fish scale/sodium alginate/chitosan nanofiber hydrogel (FS-P) by cross-linking the nanofibers in situ. From fish and other organisms, fish gelatin (FG), collagen and CaCO3 were extracted. Fish scale (FS)/sodium alginate/chitosan nanofibers were cross-linked with copper sulfide nanoparticles prepared by a one-step green method to obtain FS-P nanofiber hydrogels under mild conditions without catalyst and additional procedures. These fiber hydrogels not only have good tissue adhesion and tensile properties, but also have the antibacterial effect of natural antibacterial and CuS photothermal synergism, which can achieve 51.32% and 49.96% of the antibacterial effect against Staphylococcus aureus and Escherichia coli respectively, avoiding the generation of superbacteria. The nanofiber hydrogels have 87.56% voidage and 52.68% degradability after 14 days. The combined strategy of using marine bio-based fibers to prepare gels promoted angiogenesis and tissue repair.

关 键 词 :  信息不详。欢迎您在右侧留言补充。
论文来源 :  NANOSCALE ADVANCES.2022,5(1):160-170
语种 :  英文
所属领域 :  >>> 海洋科学研究
入库时间 :  2023-03-07
浏览次数 :  8